Geophysical Methods for GW/SW Interaction
Water in the West, 10/13/16

Frederick D. Day-Lewis
U.S. Geological Survey
Office of Groundwater, Branch of Geophysics
daylewis@usgs.gov
Outline

• Why geophysics?
• Why geophysics for GW/SW?
• Methods:
 1. Direct current electrical methods
 2. Electromagnetic Induction methods
 3. Temperature
• Conclusions
Why geophysics?

• Filling in gaps in space
 – Large areal coverage
 – High resolution

• Filling in gaps in time
 – Long-term continuous monitoring

• Limitations:
 – Indirect
 – Need multiple methods
 – Not a substitute for direct measurements
Airborne/Satellite Methods
Surface Methods
Crosshole Methods
Borehole logging
Bench-scale Experiments

RELATIVE SCALE OF INVESTIGATION

Lab or Point
Local
Regional

RELATIVE RESOLUTION

High
Moderate
Low

~10^{-4} to 1
~10^{-1} to 10
~1 to 100

[Modified from Hubbard and Rubin, 2005]
Airborne/Satellite Methods
Surface Methods
Crosshole Methods
Borehole logging

High
Moderate
Low

RELATIVE RESOLUTION

RELATIVE SCALE OF INVESTIGATION

Lab or Point
Local
Regional

~10^{-4} to 1
~10^{-1} to 10
~1 to 100

[Modified from Hubbard and Rubin, 2005]
Why geophysics for GW/SW?

- Reconnaissance
 - Mapping bed materials (electrical, EM, seismic, GPR)
 - Mapping groundwater salinity (electrical, EM)
 - Mapping relative exchange (thermal imaging, fiber optic temperature, time-lapse electrical)
- Quantifying fluxes (temperature)
- Monitoring (fiber optic temperature, electrical)
(1) Electrical Resistivity

- Mapping subsurface resistivity
 - Geology/structure
 - Salinity
- Performed from land, on stream bed, or from boat
- Requires electrodes in contact with ground or water

Earth’s resistance (R)
Continuous Resistivity Profiling

Numerical methods + Inverse modeling [with appropriate constraints on water layer thickness and conductivity]
CRP Example: Columbia River, WA

- 30 km of waterborne electrical line
- Water depths varied from 1-14 m (in channel)
- Focus on near shore where water depth of a few meters only
- Chargeability stronger indicator of lithology at this site than resistivity
- Also waterborne seismic and GPR, land-based electrical; DTS; 1D vertical temp, not shown here
Electrical cross sections

Hanford-Ringold contact defined along river corridor

Interpreted paleochannel incised below H-R contact

Locally-incised paleochannels?

Inverted image at 7 m

GPR

Line 20 (20 m from shore)
(2) Electromagnetic Induction

- Many tools/platforms for different target depths and scales of investigation
 - Geology/structure
 - Salinity
- No electrode-contact required
Mapping fresh water discharge to the CO River

Current fresh groundwater discharge estimate based on a zone of constant thickness across the wetland area...
• Unpublished results
(3) Temperature Methods

- Conventional 1D Vertical profiles
- Fiber-optic distributed temperature sensing
- Thermal imaging
DTS Example – Columbia River

- DTS provides high-resolution in space and time
- Temperature anomalies coincide with known uranium seeps, but there are many additional temperature anomalies/seeps
- DTS results consistent with electrically estimated Hanford thickness

Estimated variation in thickness of uranium contributing area from IP

Slater et al., 2007
Mwakanyamale et al., 2012
Mwakanyamale et al., 2013
• Probes installed in transect vertically through water column and into streambed
• Data calibrated using various models include 1DTempPro (USGS)
• Study of dwarf wedge mussel cold water refugia
HRTS: Delaware River cold water plume

Briggs et al., ES&T, 2013
1DTempPro V2

- USGS software
- Calibrates heat transport model to determine vertical exchange
- Used VS2DH numerical model
- Exploring extension to unsaturated zone
- http://water.usgs.gov/ogw/bgas/1dtemppro

Koch et al., Groundwater, 2015
GWSW-MST

- Groundwater/Surface Water Method Selection Tool
- Excel-based Decision Support System
- Still in active development

Similar to the Fractured Rock Geophysical Toolbox Method Selection Tool (Day-Lewis et al., 2016, Groundwater)
Conclusions

- Geophysical methods can contribute:
 - Qualitative and recon information for early conceptual system understanding
 - Higher resolution and greater coverage \(\rightarrow\) gaps in space
 - Repeat snapshots or continuous monitoring \(\rightarrow\) gaps in time
 - Quantitative information for fluxes, in the case of temperature
 - Thermal imaging – powerful technology amenable to UAS deployment

- http://water.usgs.gov/ogw/bgas
Acknowledgements

- USGS Branch of Geophysics - Martin Briggs, John Lane, Carole Johnson
- USGS Utah Water Science Center - Phil Gardner, Vic Heilweil
- Rutgers University - Lee Slater & Dimitris Ntarlagiannis