Measuring and Valuing Ecosystem Services: InVEST and Modeling Approaches

A Modeling Approach

Simple conceptual reservoir models (SWMM, Sacramento SMA,...)

Advantages:

Simple to develop/calibrate

Limitations:

No physical representation of processes (limits predictive performance in a context of LU/climate change)

Source: (eWater 2012)

InVEST Annual Water Yield Model

Diagnostic Screening Approaches

RIOS MODULES

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

RIOS Ranking Models

- Rank where land management changes will have the greatest impact on the selected service
- Factors determined through literature review
- Compromise between process representation and data availability
- Diagnostic screening, not process representation

Groundwater Recharge Enhancement

Up-slope Source

Slope

Retention + Source Factors

Source area

On-pixe

Source:

- Rainfall depth
- Vegetative cover
- Soil texture
- Slope
- Actual evapotranspiration

Retention:

- Vegetation Roughness (n)
- Extent of karst
- Soil depth

Downslope Retention

Slope

Vegetation Roughness (n)

Karst

Soil depth

Flow length to stream

Beneficiaries

Groundwater Recharge Enhancement

Jp-slope Sourc

Runoff Index

e

Slope

Retention + Source Factors

Source area

Ju-p

- Rainfall depth
- Vegetative cover
- Soil texture
- Slope
- Actual evapotranspiration

Retention:

- Vegetation Roughness (n)
- Extent of karst
- Soil depth

Downslope Retentior

Slope

Vegetation Roughness (n)

Karst

Soil depth

Flow length to stream

Beneficiaries

Challenges/opportunities

- Need to clearly define the desired outputs of the model (i.e. the inputs to the ES valuation modules):
 - Complete representation of the groundwater flow in a watershed is challenging (getting the *supply* right)
 - Clearly define and delineate deep groundwater versus subsurface flow, relate to services

- Model validation/uncertainty analyses
 - Informs data collection (e.g. need for soil moisture/gw level monitoring?)
 - Develop a simple testing framework to understand what the model is able to represent

Challenges/opportunities

- Need to target the processes of interest and develop conceptual models for these processes/services:
 - Maintaining groundwater-dependent ecosystems
 - Improve representation of groundwater from the unsaturated zone versus deep groundwater
 - Improve linkages between groundwater and ecosystems
 - Maintenance of baseflow
 - Improve representation of shallow interflow
 - Water supply for groundwater pumping
 - Represent aquifer as a lumped reservoir
 - Maintaining groundwater quality
 - Link models of groundwater contamination to land management/ natural capital

Challenges/opportunities

- Making the link from processes of interest to services & value
 - Improve trade-off dynamics between surface- and ground-water
 - New valuation models, i.e. supply from groundwater pumping
- Different approaches required for modeling biophysical system, linking to beneficiaries, and economic valuation

References

eWater, 2012. Model for urban stormwater improvement conceptualisation (MUSIC) Version 5.1, eWater Cooperative Research Centre, Canberra, Australia.

Gupta, H.V., 2008. Reconciling Theory With Observations: Elements of A Diagnostic Approach To Model Evaluation. *Hydrological Processes*, 22: 3802-3813.

Winter, T.C., Harvey, J.W., Franke, O.L., Alley, W.M., 1998. Ground Water and Surface Water A Single Resource. USGS.